Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

نویسندگان

  • Naoyuki Uchida
  • Masao Tasaka
چکیده

Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem.

Multicellular organisms achieve final body shape and size by coordinating cell proliferation, expansion, and differentiation. Loss of function in the Arabidopsis ERECTA (ER) receptor-kinase gene confers characteristic compact inflorescence architecture, but its underlying signaling pathways remain unknown. Here we report that the expression of ER in the phloem is sufficient to rescue compact er...

متن کامل

ERECTA-Family Receptor Kinases Regulate Stem Cell Homeostasis via Buffering its Cytokinin Responsiveness in the Shoot Apical Meristem

Shoot apical meristems (SAMs), which are maintained at the tips of stems, are indeterminate structures and sources of stem cells from which all aerial organs are ultimately derived. Although mechanisms that regulate the homeostasis of the stem cells have been extensively investigated, identification of further unknown regulators should provide better understanding of the regulation. Here, we re...

متن کامل

A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis

Secreted peptides mediate intercellular communication [1, 2]. Several secreted peptides in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family regulate morphogenesis of tissues, such as stomata and inflorescences in plants [3-15]. The biological functions of other EPFL family members remain unknown. Here, we show that the EPFL2 gene is required for growth of leaf teeth. EPFL2 peptide physically ...

متن کامل

Plan B for Stimulating Stem Cell Division

Plant development relies on two kinds of coordinated regulatory inputs to generate an optimal plant body. First are inputs regulating the spatial organization of cells in the plant. These ‘‘hardwired’’ inputs are invariant between individuals and their actions are buffered from the environment. Second are variable inputs that modify the development of tissues to optimize growth for given condit...

متن کامل

A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots.

Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 64 17  شماره 

صفحات  -

تاریخ انتشار 2013